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Abstract

In the years of 1586 to 1592 the Swiss instrument maker and

mathematician Jost Bürgi devised and documented an ingenious

algorithm for efficiently and precisely calculating tables of the sine

function. The manuscript Fundamentum Astronomiæ explaining this

method and Bürgi’s tables had been considered as lost, but have been

rediscovered in 2013 by Menso Folkerts in the University Library of

Wroclaw (Poland). In this presentation we explain and discuss Bürgi’s

algorithm, referred to as Artificium or Kunstweg, with the tools of

modern Linear Algebra. By considering the difference table of the sine

function and by using matrices and eigenvalue problems, we develop a

theory of the algorithm and discuss the rate of convergence.
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1. Jost Bürgi’s Artificium

Jost Bürgi’s Artificium algorithm is described in his mathematical text

Fundamentum Astronomiæ, written between 1586 and 1592, but only

rediscovered 2013 by Menso Folkerts [4,5]. Details are given by, among

others, Dieter Launert [6,7], Fritz Staudacher [10] and George Szpiro

[11]. The Artificium is an algorithm for calculating

sin

(
j π2
n

)
, j = 1, . . . , n, n > 1

efficiently and precisely. Bürgi’s example is n = 9 (see p. 5); he also

suggests n = 90, “every degree of the right angle”. We will use the

simpler case

n = 3 : sin(30o) =
1

2
, sin(60o) =

√
3

2
, sin(90o) = 1 .
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From Fundamentum Astronomiæ
As customary in 16th century astronomy, the hexagesimal number system is

used. Working from right to left, the algorithm generates a table of numbers.

The ones printed in red are given for clarification only, they are not carried

along.

sin(0o) 0 0 0 0 0 0
2911 780 209 56 15

sin(30o) 2911 780 209 56 15 4
2131 571 153 41 11

sin(60o) 5042 1351 362 97 26 7
780 209 56 15 4

sin(90o) 5822 1560 418 112 30 8
-780 -209 -56 -15 -4

. . . f e d c b a

0. Initial column: a = (a1, a2, . . . , an)
′ ∈ Rn, (almost) arbitrary, for

example, but not necessarily, multiples of the sines to be calculated,

f · sin( j π
2n

), rounded to integers (f = 8 in the above case).

1. Next column to the left: b = (b1, b2, . . . , bn)
′ = cumulative sum of

the aj upwards, first bn = an
2

, then bj = bj+1 + aj , j = n− 1, . . . , 1.

2. Further column to the left: c = (c1, c2, . . . , cn)
′ = cumulative sum

of the bj downwards, first c1 = b1, then cj = cj−1 + bj , j = 2, . . . , n.
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The sine function y = sin(x)
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Continuation to the left

Continuation of the table to the left by repeating Steps 1 and 2. The

Artificium actually is a difference table, built from right to left.

The odd columns a, c, e,g, . . . , normalized by dividing them by their

bottom element, approximate sin( j π2n ) with increasing accuracy.

In the following table the data concerning sin(60o) are collected:

. . . , c2/c3, a2/a3 1351/1560 362/418 97/112 26/30 7/8

. . . , a2/a3 −
√
3/2 2.3724e-7 3.3043e-6 4.6025e-5 6.4126e-4 8.9746e-3

Ratio to next error 13.92823 13.92855 13.93299 13.99526

The limit of the Ratio will be shown to be 7 + 4
√

3 = 13.92820323.
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2. Differences

Difference tables are efficient tools for tabulating functions with

equidistant arguments, e.g. the third powers f(n) = n3:

n f(n) ∆1 ∆2 ∆3

0 0 0
1 6

1 1 6
7 6

2 8 12
19 6

3 27 18
37 6

4 64 24
61 6

5 125 30
91

6 216

• In this example the third dif-

ference is constant

• The top elements and the last

column must be known

• Construction of the table by

cumulative summation from

right to left and from top to

bottom

• Additions only!
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The difference table of the sine function

Prosthaphæresis (co-invented and used by Bürgi, [8])

cos(α) · cos(β) =
1

2

(
cos(α+ β) + cos(α− β)

)
Let α =

π

2
− y − x

2
, β =

y + x

2
; this implies

sin y − sinx = 2 sin
(y − x

2

)
cos
(y + x

2

)
.

Difference Table of f(x) = sinx:

f(x) ∆1 ∆2

sin(x− 2 δ)
2 sin δ · cos(x− δ)

sinx −4 sin2 δ · sinx
2 sin δ · cos(x+ δ)

sin(x+ 2 δ)

The second difference is proportional to the function value

on the same line (with a negative factor)
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Bürgi’s main result

Remarks

• The tabulation of the cumulative sums is the inverse map of the

construction of the difference table

• The initial conditions are a consequence of the symmetries of the

sin- and cos-functions at x = 0 and x = 90o

• The normalization to sin(90o) = 1 needs one division per element

Theorem 1:

For (almost) arbitrary initial columns a = (a1, . . . , an)′ with

n > 1, the normalized odd columns ak/an, ck/cn, ek/en, . . .

converge to sin(k π/2
n ), k = 1, . . . , n.
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3. Vectors and matrices

In the case n = 3 of p. 4 we define ã = (a1, a2,
a3

2 )′ = H · a, where H

generally is the diagonal matrix with the n diagonal elements

1, 1, . . . , 1, 12 . Now the first two steps of p. 6 are

b =


1 1 1

0 1 1

0 0 1

 ã, c =


1 0 0

1 1 0

1 1 1


︸ ︷︷ ︸

T

b .

Therefore the mapping corresponding to an Artificium step is

c = M a with M = T ·T′ ·H .
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The Bürgi matrix M

The matrix M = T ·T′ ·H describing the Artificium mapping will be

called the Bürgi Matrix. It had already been mentioned by D. Launert

and A. Thom [6]. For n = 5 we obtain

M =



1 1 1 1 0.5

1 2 2 2 1

1 2 3 3 1.5

1 2 3 4 2

1 2 3 4 2.5


.
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The matrix T has a simple inverse

T ∈ Rn×n is the lower triangular matrix filled with ones. For later use

we derive an alternative representation of T. Let I be the unit matrix,

and let L be the unit subdiagonal matrix,

I =


1

1

. . .

1

 , L =


0

1 0

. . .
. . .

1 0

 ∈ Rn×n.

Then we have

T = I + L + L2 + · · ·+ Ln−1 = (I− L)−1.
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The Bürgi matrix M also has a simple inverse

If a(0) = a ∈ Rn is the initial column and the further odd columns are

denoted by a(1) = c, a(2) = e, . . . , the Artificium algorithm may be

written as

a(j) = M a(j−1), j = 1, 2, . . . ,

in modern Linear Algebra known as power iteration (von Mises -

Geiringer). Assume M has only one eigenvalue, λ1, of maximum

magnitude. Then the normalized vectors a(j)/||a(j)|| converge to the

corresponding eigenvector v1 with the property M v1 = v1 λ1.

For solving the eigenvalue problem we consider the inverse of M, which

is tridiagonal (use T of p. 14):

M−1 = H−1 (I− L)′ (I− L).
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The mapping induced by M−1

For n = 4 we obtain

M−1 =


2 −1

−1 2 −1

−1 2 −1

−2 2

 , M̃ =


−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1

 .

By introducing the supplemented vector x̃ =
(
0; x;xn−1

)
, exactly

modelling the behaviour of the sine funtion at 0 and at π/2, the

mapping induced by M−1 becomes

y = M̃ x̃
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Results

• The Artificium algorithm inverts the formation of the difference table

of the sine function in the interval [0, π2 ] up to an unknown factor

• Bürgi takes care of this factor by normalizing the leftmost column to

sin(π/2) = 1 by dividig it by its nth element.
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Power iteration

Notation: upper index (j) counts the odd columns:

Initial column a(0) := a ∈ Rn

Further odd columns a(1) := c, a(2) := e, . . .

with components a(j) =
(
a
(j)
1 , a

(j)
2 , . . . , a

(j)
n

)′
.

The Artificium algorithm

a(j) = M a(j−1) , s(j) =
a(j)

a
(j)
n

, j = 1, 2, . . . ,

is the well-known power iteration (R. von Mises, Hilda Geiringer, 1929).

Relevant for convergence theory: Eigenvalue problem of M.
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4. Eigenvectors and Eigenvalues

The Eigenvalueproblem of M

If the eigenvalue λ1 of maximum magnitude is simple, the power

iteration converges direction-wise to the corresponding eigenvector v1

satisfying M v1 = v1 λ1.

M−1 has the same eigenvectors as M, but the reciprocal eigenvalues.

The following theorem may easily be proven using elementary

trigonometry (p. 10) and the mapping induced by the matrix M̃ based

on M−1, representing calculation of the negative second difference.
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Theorem 2. There exists a regular matrix V and a diagonal matrix D

such that M is similar to D, i.e.

M V = V D .

The matrix V =
(
vki
)

with

vki = sin
(
k (i− 1

2
)
π

n

)
, k, i = 1, . . . , n

contains n linearly independent eigenvectors of M as its columns

(i fixed), and D contains the eigenvalues

λi =
1

4 sin2
(
(i− 1

2 ) π
2n

) with λ1 > λ2 > · · · > λn

on its diagonal.
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5. Rate of Convergence

Bürgi’s normalizations for obtaining approximations xkj of sines:

s(j) =
a(j)

a
(j)
n

=⇒ s(j)n = 1

Bürgi’s Artificium algorithm yields

lim
j→∞

s(j) = v1 (first eigenvector)

Norm of the error: e(j) = ‖s(j) − v1‖2

Convergence quotient: q(j) =
e(j−1)

e(j)

Often we have Q := limj→∞ q(j) =
λ1
λ2
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Modified initial column u = a in the basis of V

According to the first equation of Theorem 2, M V = V D, the power

iteration can be represented in a simpler form:

a(j) = M V V−1 a(j−1) ⇒ V−1 a(j) = D V−1 a(j−1) .

Modified iteration vector: u(j) = V−1 a(j)

Modified initial column: u = u(0) = V−1 a(0) = V−1 a

Therefore: u(j) = D u(j−1) or u(j) = Dj u(0)

The rate of convergence depends on the eigenvalues

λi = 1
4/ sin2

(
(i− 1

2 ) π
2n )
)

and on the modified initial column u.
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The eigenvalues (p. 20) satisfy λ1 > λ2 > · · · > λn. With

V−1 = 2
n V′H, the rth component ur of the modified initial column

becomes (r = 1, 2, . . . , n):

ur =
2

n

n∑
i=1

′ sin
(

(r − 1
2 ) i πn

)
ai, Σ′ : last term with half weight

The initial column a must be chosen such that u1 6= 0. The statement

of p. 21 on Q holds, if also u2 6= 0.

Theorem 3

Let r ≥ 2 be the smallest index with ur 6= 0. Then Q = limj→∞ q(j) =
λ1
λr

.
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6. How Bürgi could have found the Artificium

of 1586, and an application of the Progress
Tabulen

6.1 A possible origin of Bürgi’s ideas for the sine table

In the 16th century astronomy was one of the most advanced sciences.

The knowledge had been obtained by astronomers observing stars and

planets through telescopes. The position of a star was described by two

angles, and for investigating the motion of planets trigonometry had to

be developed. It could also be used very well for navigation in the

oceans.

Jost Bürgi (1552-1632) was appointed 1579 in Kassel by the Duke

Wilhelm IV of Hessen as the court Watchmaker and Mechanicus. In this

position he had contact with many scientists, also with astronomers.
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This could also have produced the idea to generate new and better

tables of the trigonometric sine function, to be used in astronomy as well

as in navigation.

At that time, all data used in astronomical calculations (also lengths)

were represented as numbers in the system of base 60, still used today

with minutes and seconds for times and angles. In Bürgi’s trigonometric

tables also the values of the sine function are represented in base 60. In

our discussion these data will be converted to the decimal system.

Bürgi’s idea to generate a table of sines is absolutely ingenious, to be

admired even today. No documents about the development of Bürgi’s

ideas exist, but it can be assumed that he had a few sine-values from

earlier tables, and that he had the idea to repeatedly take the differences.
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Example:

Angles αj = j · 300, j = 0, 1, 2, 3:

∆1,j = sinαj − sinαj−1, ∆2,j = ∆1,j+1 −∆1,j , j = 1, 2, 3

j αj sinαj ∆1 −∆2 −∆2,j/ sinαj

0 0o 0
0.500000

1 30o 0.500000 0.133975 0.267950
0.366025

2 60o 0.866025 0.232050 0.267948
0.133975

3 90o 1.000000

(1)

To keep all values positive, the sign of ∆2 is changed. The difference of

two numbers is always noted in an intermediate line. Surprisingly, −∆2

is proportional to sinα! Bürgi must have observed this too, but it is not

known whether he had a proof.
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For a proof one could start with the prosthaphæresis used already before

1600 to simplify multiplications, since trigonometric tables existed

already:

cos(α+ β) + cos(α− β) = 2 cosα · cosβ. (2)

Introducing the angles δ and x according to

α =
δ

2
− π

2
, β =

δ

2
+ x

(π
2

= 90o
)

(3)

yields

sin(x+ δ)− sinx = 2 sin
δ

2
· cos

(
x+

δ

2

)
. (4)
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Then three lines of a generalized table (1) with difference δ become

∆1 −∆2

sin(x− δ)
2 sin

δ

2
· cos

(
x− δ

2

)
sin(x) 2 sin

δ

2
· 2 sinx · sin

( δ
2

)
2 sin

δ

2
· cos

(
x+

δ

2

)
sin(x+ δ)

(5)

Therefore

−∆2/ sinx = 4 sin2 δ

2
= 2(1− cos δ). (6)

The negative second difference is proportional to sin(x) with the positive

factor f = 2(1− cos δ). In the previous example we have δ = 30o = π
6

and obtain

f = 2
(

1− cos
π

6

)
= 2−

√
3 = .26794 91924.



Jörg Waldvogel, ETH Zürich 28

We all know from school that the second derivative of sin(x) is

−1 · sin(x). Admirably, also the second difference is proportional to

sin(x), but with a factor different from −1.

At Bürgi’s time the notion of the derivative was not yet known. Bürgi

did not need the derivative of the sine function, but he noticed the

proportionality with the second difference and invented an ingenious sine

algorithm, using this discovery.
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6.2 Construction of the Artificium/Kunstweg

We use the slightly extended table (1) to give an easily understandable

description of the Artificium which could have been Bürgi’s way.

Add α4 = 120o to table (1) and tabulate round(f · sin(α)) = [f · sin(α)]

with differences, change the signs in the columns number −∆2, −∆3,

−∆6, −∆7, . . . and add the proportional boundary elements. Choose f ,

e.g. f = 1000, and build the repeated integer difference table, using

δ = π
2 /n with n = 3 and δj with j = 0, . . . , n+ 1, and using

sin(π2 + α) = sin(π2 − α).

α [f· sin(α)] ∆1 −∆2 −∆3 ∆4 = e ∆5 = d
−∆6 = c −∆7 = c

∆8 = a

0o 0 0 0 0 0
500 134 36 10

30o 500 134 36 10 4
366 98 26 6

60o 866 232 62 16 2
134 36 10 4

90o 1000 268 72 20 8

−134 −36 −10 −4
120o 866 232 62 16 2
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Bürgi’s discoveries:

A. Starting with the right-most column ∆8, the entire table can

easily be reconstructed.

Notation of column vectors ∆8 = a = (a1, . . . , an)′,

−∆7 = b = (b1, . . . , bn)′, −∆6 = c = (c1, . . . , cn)′.

Get b from a, bottom to top: (7)
bn = an

2 , bj−1 = bj + aj−1, j = n, . . . , 2,

Get c from b, top to bottom: (8)
c1 = b1, cj = cj−1 + bj , j = 2, . . . , n .

Go all the way to ∆0,j = [f · sin(αj)].

B. The sines are obtained by division by ∆0,n

sin(αj) = ∆0,j/∆0,n j = 1, . . . , n .



Jörg Waldvogel, ETH Zürich 31

C. By the generation of the difference table accuracy was lost, here

from 3 digits to only one.

It can be hoped that the inverse process will increase the

accuracy. Two more steps to the left yield

6964 1866

6964 1866

5098 1366

12062 3232

1866 500

13928 3732 .

Division is heavier,

12062

13928
= 0.8660 2527 28

3232

3732
= 0.8660 2357 98.

The exact value is sin(60o) =
√

3/2 = 0.8660 2540 38.
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One step improves the accuracy by a factor of ∼ 14. The

convergence quotient is Q = 7 + 4
√

3 = 13.9282.

This is the Artificium:

Begin with an almost arbitrary rightmost column a, e.g. an integer

1-digit approximation of the wanted sine values.

The even columns b,d, . . . are built upwards by cumulative

summation of the previous column a, c, . . . . The initial (lowest)

element is half the initial element of the previous column. The odd

columns c, e, . . . are built by cumulative sums downwards, initial

(uppermost) element = uppermost element of the previous column.

The boundary elements printed in red need not be carried along.
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6.3 Convergence theory

For investigating the convergence the algorithm needs to be formulated

mathematically. For a given n > 1 use the angles αj = j · δ,

j = 1, 2, . . . , n, δ = 90o

n = π
2n are considered.

Consider the 3 right-most column vectors denoted by a, b, c ∈ Rn; the

beginning vector a must be chosen.

We now describe the rules of §6.2 by using n× n matrices. By

introducing the diagonal matrix H = diag(1, 1, . . . , 1, 12 ), the halving of

the last component of a may be written as

ã = Ha.

Then the first operation of the Artificium is

b′ =
(
. . . an−2 + an−1 +

an
2
, an−1 +

an
2
,
an
2

)′
.
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In matrix notation with n = 3:

b =


1 1 1

0 1 1

0 0 1




1 0 0

0 1 0

0 0 1
2

a = T ′ ·Ha with T ′ =


1 1 1

0 1 1

0 0 1

 .

Bürgi’s next step:

c = T · b =


1 0 0

1 1 0

1 1 1




1 1 1

0 1 1

0 0 1




1 0 0

0 1 0

0 0 1
2

a = Ma,

where

M =


1 1 0.5

1 2 1

1 2 1.5

 .
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Matrix theory for generating M :

L =


0

1 0

1
. . .

1 0

 , `jk =

 1 if j = k + 1

0 otherwise

 , j, k = 1, . . . , n .

For general n there follows

I + L+ L2 + L3 + · · · = (I − L)−1, I = n× n unit matrix

M = (I − L)−1(I − L′)−1H
M−1 = H−1(I − L′)(I − L) = H−1

(
I − L′ − L+ diag(1, 1, . . . , 1, 0)

)
.
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Example: n = 4

M =


1 1 1 0.5

1 2 2 1

1 2 3 1.5

1 2 3 2

 , M−1 =


2 −1

−1 2 −1

−1 2 −1

−2 2

 .

The multiplication by M−1 represents the computation of the second

difference.

For investigating the convergence the eigenvalues and eigenvectors of

the Bürgi matrix M are needed. Due to the simple structures of M and

M−1 explicite expressions for the eigenvalues λj and eigenvectors vjk
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exist; the corresponding matrices are denoted by D and V :

λj =
1

4 sin2
(
(j − 1

2 ) π
2n

) , D = diag(λj), (9)

vjk = sin
((
j − 1

2

)
k
π

n

)
, j, k = 1, 2, . . . , n, V = matrix (vjk). (10)

Then, according to linear algebra

M · V = V ·D, D = V −1 ·M · V, (11)

where in this case the inverse V −1 is given by

V −1 =
2

n
V TH. (12)

Bürgi’s algorithm starts in the rightmost column with an (almost

arbitrary) first column vector a0. We only consider the odd columns in
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Bürgi’s table, now denoted by a0, a1, . . . , i.e. we iterate

aj+1 = Maj , j = 0, 1, . . . . (13)

To investigate the convergences, we normalize after each step by division

by the n-th component aj,n of aj ,

xj =
aj
aj,n

, (14)

in contrast to Bürgi, who normalized only at the end.

In case of convergence (seen later) the vector s of the wanted sine

values is
s = lim

j→∞
xj . (15)



Jörg Waldvogel, ETH Zürich 39

With the error ej = ‖xj − s‖ the convergence quotient Q is given by

Q = lim
j→∞

ej+1

ej
. (16)

Often, Q is found to be Q = λ1

λ2
= sin2( 3π

4n ) / sin2( π4n ).

A more careful investigation uses the diagonal form D of M in

Equ. (11). Introducing the modified Bürgi column vector uj by

uj = V −1aj , (17)

the iteration (13) becomes

uj+1 = Duj , uj = Dju0, uj,k = (λk)j u0,k, (18)

where u0,k are the components of the modified initial column;

u0,k =
2

n

n∑
`=1

′ sin
((
k− 1

2

)
`
π

n

)
a0,`, Σ′: last term: half weight. (19)
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Only the components of the initial vector a0 with index k (producing

u0,k 6= 0 in Equ. (19)) contribute to the convergence speed. Most

importantly, u0,1 must not vanish, u0,1 6= 0. Then, the smallest index

r > 1 with u0,r 6= 0 determines the convergence quotient Q.

The dominant term in the sequence aj grows as aj = O((λ1)j). The

first additional contribution grows as O((λr)
j), i.e. the relative error

grows as O((λ1

λr
)j). The base is called the convergence quotient Q:

Q =
λ1
λr

. (20)
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Example: n = 3

V =



1

2
1

1

2
√
3

2
0 −

√
3

2

1 −1 1

 , V −1 =



1

3

1
√
3

1

3

2

3
0 −

1

3

1

3
−

1
√
3

1

3



D =


2 +
√
3 0 0

0
1

2
0

0 0 2−
√
3


λ1 = 2 +

√
3

λ1

λ2

= 7.46410 16151

λ2 =
1

2 λ1

λ3

= 13.92820 32303

λ3 = 2−
√
3

M = V DV −1 =


1 1

1

2

1 2 1

1 2
3

2

 , M−1 =


2 −1 0

−1 2 −1

0 −2 2


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Experiment with 4 Bürgi steps: n = 3, j = 2, α = j
π

2n
= 60o

initial a′0 u′0 r Q a4,j/a4,n error

1 (4, 2, 8) (5.155, 0, 2.845) 3 13.928 866/1000 −2.540410 − 5

2 (2, 2, 8) (4.488,−
4

3
, 2.179) 2 7.464 754/870.75 −1.052210 − 4

3 (8, 14, 18) (16.75,−
2

3
, .584) 2 7.464 2814/3249.395 −1.270910 − 5

4 (1, 2, 2) (2.155, 0,−.155) 3 13.928 362/418 3.304310 − 6

5 (4, 2, 8) (8.041, 0,−.041) 3 13.928 1351/1560 2.372410 − 7
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6.4 A remark on checks in the Artificium

As mentioned earlier (Waldvogel, Elem. Math. 69 (2014), 89-117,

p. 104), the unlikely, but correct entry

b431 = 1.04404 00441 01224, b = 1.0001

could have been used for extremely efficient checks in hand calculation.

Example:

Precalculation and check of the last 431 steps of the Progess Tabulen:

b500 = 1.0512 6847 Get 4 · 10512 6847
420 5073 9 = 42050 7388
42 0507 4

4205 1
4 2
4

b500 · b431 = b500+431 = 1.0975 6638 0
Bürgi had tabulated b931 = 1.0975 6638 Correct ! Continue !

exact 1.0975 6637 8 086
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6.5 A modern application of the Progress Tabulen

About 150 years after Bürgi, Leonhard Euler from Basel (1707-1783),

one of the most talented scientists of the world, developed mathematics

to the present status. He introduced the notions of the limit, of clearly

defined functions (e.g. sin(x), exp(x)), he introduced power series for

functions, complex numbers, etc., etc.. His collected works of 92

volumes fill 3 shelves of a library.

These functions are common knowledge now, are tought in high-schools

as of the 7th year. We will show that Bürgi’s Progress Tabulen allow to

cheaply compute the exponential function exp(x) and the natural

logarithm ln(x) to 9-digit precision. Following the notation in modern

mathematics, we will denote the natural logarithm of x by log(x). These

notions were not yet defined at Bürgi’s time, except that Napier had
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tabulated log(x) in some intervals to about 6 digits precision (in a

10-year effort until 1616).

Most likely, Bürgi only wanted to speed up multiplications, divisions and

square roots. However, the table has more applications that could have

come up only 150 years after Bürgi, when Euler brought mathematics a

huge step forward.

The Euler number

e = 2.71828 18284 59 . . . (21)

is the basis of the natural logarithms log(x), defined by

log(1 + x) = x− x2

2
+
x3

3
− . . . (22)

With a table of natural logarithms, multiplication can be simplified no

better than with Bürgi’s tables. However, log(x) is now badly needed for
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integration, e.g. ∫ x

1

dt

t
= log(x). (23)

The inverse function

y = ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ . . . (24)

equivalent with x = log(y) is equally important in modern mathematics,

it solves the differential equation f ′(x) = f(x).

In a few examples we show how values of log(x) and ex can easily and

quickly be obtained from Bürgi’s table.

Get natural logarithms log(x) from Bürgi

Given x ∈ [1, 10]. First, find the exponent k of 1.0001 in Equ. (25),

possibly by linear interpolation:

x = 1.0001k = (1 + ε)k. (25)
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In addition, the Bürgi number B = 23027.0022 is needed

(1 + ε)B = 10, ε = 10−4. (26)

Taking the logarithm of (25) yields

log(x) = k·log(1+ε) = k·
(
ε− ε

2

2
+
ε3

3
−. . .

)
= kε−kε· ε

2
+kε· ε

2

3
. (27)

Examples

a) x = 10. According to Equs. (26) and (27) with k = B:

log(10) = Bε−Bε · ε
2

+Bε · ε
2

3
− . . . (28)
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log(10) = 2.3027 0022

- 1 1513 5

+ 8

2.3025 8509 3

exact 2.3025 8509 2994

b) x = 2. Find x in the table, x = fk = (1 + ε)k

k (1 + ε)k

k1 = 6931 f1 = 1.9998 3634

k2 = 6932 f2 = 2.0000 3632

Interpolation: k = k2 −
f2 − x
f2 − f1

= 6932− .0000 3632

.0002 0000
= 6931.8184
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log(2) = .6931 8184

- 3465 9

+ 2

.6931 4718 3

exact .6931 4718 0560

c) x = 9.5

k (1 + ε)k

k1 = 22514 f1 = 9.4999 5857

k2 = 22515 f2 = 9.5009 0857

Interpolation:

k = k1 +
x− f1
f2 − f1

= 22514 +
.0000 4143

.0009 5000
= 22514.0436
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log(9.5) = 2.2514 0436

- 1 1257 0

+ 7

2.2512 9179 7

exact 2.2512 9179 8606

Get the exponential function ex from Bürgi

Find k with ex = (1 + ε)k: ex is the k-th table entry

=⇒ x = k · log(1 + ε) = k
(
ε− ε2

2
+
ε3

3
− ε4

4
+ . . .

)
; (29)

solve for k

k =
x

ε

(
1 +

ε

2
− ε2

12
+
ε3

24
+ . . .

)
=
x

ε
+
x

2
− εx

12
+
ε2x

24
. . . (30)
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Examples

d) x = 1. According to (29):

k = 10000 +
1

2
− 0.0001

12
+ · · · = 10000.49999 (31)

Interpolation: k (1 + ε)k

k1 = 10000 f1 = 2.7181 4593

k2 = 10001 f2 = 2.7184 1774

Use the middle value, rounded down due to minus sign in (31)

f1 + f2
2

= 2.7182 8183

exact 2.7182 8182 8489
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e) x = 10. According to (31):

k = 104 · 10 +
10

2
− 10−4 · 10

12
+ 10−8 · 10

24
− . . . .

Not in the range of the Artificium, reduce N times by the Bürgi

number B

N = floor
( k
B

)
= 4; k′ = k −N ·B = 7896.9911

k′ (1 + ε)k
′

k′1 = 7896 f1 = 2.2024 2830

k′2 = 7897 f2 = 2.2026 4854
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Interpolation: f = f2− ε(f2− f1)(k′2− k′) = f2− ε · 2.2024 · 0.0089

= 2.2026 4854

- 196

2.2026 4658

e10 = 2.2026 4658 · 10N = 22026.4658

exact ε10 = 22026.4657 9481 .
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7. Further examples

The cases n = 3 and n = 9 are the introductory example and Bürgi’s example

yielding r = 3. The case n = 4 is one of the many examples with r = 2 and

rather slow convergence Q < 9, where integer initial columns are difficult to

find or do not exist.

n=3: a = (4, 7, 8)′, u2 = 2
3

(
1 · a1 + 0 · a2 − 1 · a3

2

)
= 0, r = 3 ⇒

Q3 =
λ1

λ3
=

sin2(75o)

sin2(15o)
= 7 + 4

√
3 = 13.92820

n=4: a = (4, 7, 9, 10)′, u2 = 0.20111, r = 2 ⇒

Q2 =
λ1

λ2
=

sin2(33.75o)

sin2(11.25o)
= 8.10973

n=9: a = (2, 4, 6, 7, 8, 9, 10, 11, 12)′, u2 = 0, r = 3 ⇒

Q3 =
λ1

λ3
=

sin2(25o)

sin2(5o)
= 23.51281

n=15: a = (1, 2, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 12, 12)′, u2 = u3 = 0,

r = 4 ⇒ Q4 =
λ1

λ4
=

sin2(21o)

sin2(3o)
= 46.88760



Jörg Waldvogel, ETH Zürich 55

These two examples considering values of n divisible by 15, n = 15m,

were found by Grégoire Nicollier [9]. They are characterized by initial

columns with only a few non-zero elements. The last example shows a

remarkable initial column leading to r = 6 and Q6 ≈ 121, however only

with irrational components (involving the golden ratio

φ = sin 42o+sin 78o

sin 6o+sin 66o = 2 cos 36o = 1+
√
5

2 = 1.618034).

n=15 m: ak = 1 if k = 2m or k = 10m or k = 12m, ak = 0 otherwise,

r = 4 ⇒ Q4 ≈ 49, e.g. Q4 = 48.94 for n=90 (Nicollier)

n=15 m: ak = 1 if k = m or k = 11m, ak = φ if k = 7m or k = 13m,

ak = 0 otherwise, r = 6 ⇒

Q6 =
λ1
λ6
≈ 121, goes back to Q4 ≈ 49 after a few steps if φ is

only approximated, e.g. by φ ≈ 13
8 (Grégoire Nicollier, Sion [9])
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